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Abstract
The problem of estimating an unknown SU(D) channel �U : ρ �→ UρU ∗

is studied based on the quantum Cramér–Rao inequality. It is shown that the
minimum estimation error is of O(1/n2), where n is the degree of extension of
the channel. The mechanism behind this asymptotic behaviour is investigated
from a differential geometrical point of view.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

This paper deals with the problem of estimating an unknown unitary channel �U acting on
the set S(H) of density operators on a Hilbert space H � C

D as �U : ρ �→ UρU ∗, where
U ∈ SU(D). In particular, we investigate the optimal estimation scheme using the extension
(id ⊗ �U)⊗n : S((H ⊗ H)⊗n) → S((H ⊗ H)⊗n), where n is an arbitrary positive integer.

Due to its obvious group covariant structure, the problem has been studied in a Bayesian
framework [1–4], using a covariant cost function averaged over SU(D) with respect to the
uniform prior distribution (i.e., the Haar measure). In contrast, our approach is a local one
based on the quantum Cramér–Rao inequality. Such a local approach, the validity of which
has been established in [5], has an advantage that it allows a direct comparison of estimation
performances among various classes of quantum channels which do not necessarily possess
a priori distributions such as the generalized Pauli channels [6]. It also allows us to invoke
differential geometrical methods [7] in studying the roles of the quantum entanglement and
the degree n of extension.

The paper is organized as follows. We summarize the main results in section 2, and prove
them in section 3. In section 4, we recast the main results from a differential geometrical
point of view. In section 5, we give brief concluding remarks, and further remarks on the
admissibility of an input state are presented in the appendix.
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2. Main results

Let us introduce a local coordinate system θ = (
θ1, . . . , θD2−1

)
of SU(D) around a point U0

by the exponential map:

Uθ = U0 exp


√−1

D2−1∑
i=1

θ iXi


 , (1)

where {√−1Xi}1�i�D2−1 is a basis of Lie algebra su(D) satisfying Tr XiXj = 1
2δij . By a

suitable rearrangement of the constituent Hilbert spaces H, we identify
(
id ⊗ �Uθ

)⊗n
with

id⊗n ⊗ �⊗n
Uθ

. Once an input state ψ(n) ∈ H⊗n ⊗ H⊗n is fixed, we have a quantum statistical
model

ρθ := (
id⊗n ⊗ �⊗n

Uθ

)
(|ψ(n)〉〈ψ(n)|),

and the problem of estimating the unknown unitary operation Uθ ∈ SU(D) is reduced to
estimating the parameter θ of the model ρθ .

Let us decompose H⊗n into irreducible subspaces under the SU(D) action as follows:

H⊗n =
⊕

λ


 ⊕

[λ]∈ STab(λ)

H[λ]


 ,

where λ runs over all possible Young frames (or Dynkin indices) and STab(λ) stands for the
set of standard tableaux on λ. Then

H⊗n ⊗ H⊗n =
⊕

λ


 ⊕

[λ]∈ STab(λ)

H⊗n ⊗ H[λ]


 .

Given an input state ψ(n) ∈ H⊗n ⊗ H⊗n, let us decompose it as

ψ(n) =
∑

λ

∑
STab(λ)

a[λ]ψ [λ], (2)

where ψ [λ] is a unit vector on the invariant subspace H⊗n ⊗ H[λ], and the coefficients a[λ]

satisfy the normalization∑
λ

∑
STab(λ)

|a[λ]|2 = 1.

Associated with the quantum statistical model ρθ is the symmetric logarithmic derivative
(SLD) Fisher metric g [7], which will also be denoted as gψ(n) when the input state ψ(n) needs
to be specified. The SLD Fisher metric g is a measure of statistical distinguishability, and is
one of the most fundamental quantity in quantum estimation theory. In fact, it is related to the
quantum Cramér–Rao inequality [8, 9]

Vθ [M(n)|ψ(n)] � (Jθ [ψ(n)])−1, (3)

where Vθ [M(n)|ψ(n)] is the covariance matrix of the locally unbiased estimator (POVM) M(n)

for the parameter θ when the input state is ψ(n), and Jθ [ψ(n)] is the SLD Fisher information
matrix, i.e., the representation of the SLD Fisher metric g by components with respect to the
coordinate system θ .

In view of the Cramér–Rao inequality (3), the way of finding an optimal estimation scheme
is twofold. First, we optimize the input state ψ(n) to make the lower bound (Jθ [ψ(n)])−1 as
small as possible, that is, to make the SLD Fisher metric g as large as possible. Second, we
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investigate if the corresponding lower bound is achievable, that is, if there is a locally unbiased
estimator M(n) for which the equality holds in (3).

Motivated by the decomposition (2), let us first mention the problem of maximizing
the SLD Fisher metric g[λ] := gψ [λ] for the model ρ

[λ]
θ := (

id⊗n ⊗ �⊗n
Uθ

)
(|ψ [λ]〉〈ψ [λ]|) on the

invariant subspace H⊗n ⊗H[λ]. Unfortunately, the set {Jθ [ψ]|ψ ∈ H⊗n ⊗H[λ]} does not have
the maximal element in general (see the appendix). In other words, there is no input state
ψ ∈ H⊗n ⊗ H[λ] that maximizes the metric g[λ] itself. Hence, we must introduce a weaker
optimality criterion.

Definition 1. A state φ ∈ H⊗n ⊗ H[λ] is called admissible in the component H⊗n ⊗ H[λ] if

tr J0[φ] = max{tr J0[ψ]|ψ ∈ H⊗n ⊗ H[λ]}.

Suppose φ ∈ H⊗n ⊗ H[λ] is admissible in H⊗n ⊗ H[λ]. Then it is easily seen that there
is no ψ ∈ H⊗n ⊗ H[λ] that satisfies J0[ψ] � J0[φ] and J0[ψ] 
= J0[φ] simultaneously.
Stated otherwise, there is no ψ ∈ H⊗n ⊗ H[λ] that satisfies g

[λ]
ψ � g

[λ]
φ and g

[λ]
ψ 
= g

[λ]
φ at

U = U0. Moreover, since J0[ψ] is independent of the choice of U0 ∈ SU(D) (see the proof of
theorem 1), it follows that there is no ψ ∈ H⊗n ⊗H[λ] that satisfies g

[λ]
ψ � g

[λ]
φ and g

[λ]
ψ 
= g

[λ]
φ

anywhere on SU(D). This observation justifies the notion of admissibility as an alternative
optimality criterion for input states.

The admissibility of the input state is closely related to the achievability of the Cramér–Rao
inequality. In fact, we can prove the following.

Theorem 1. For ψ ∈ H⊗n ⊗ H[λ], the following are equivalent:

(a) There is a locally unbiased estimator M on H⊗n ⊗ H[λ] that satisfies V0[M|ψ] =
(J0[ψ])−1.

(b) ψ is admissible.

As to a general input of the form (2), we have the following.

Theorem 2. If the input ψ(n) is a superposition of admissible states ψ [λ] ∈ H⊗n ⊗ H[λ] as
(2), the lower bound of (3) is achievable. Moreover, the SLD Fisher metric is decomposed as

g =
∑

λ

∑
STab(λ)

|a[λ]|2g[λ]. (4)

All in all, it is reasonable to restrict ourselves to inputs ψ(n) ∈ H⊗n ⊗ H⊗n that are
superpositions of admissible states ψ [λ] ∈ H⊗n ⊗ H[λ]. (A further discussion is given in the
proof of theorem 2.) In what follows, as a canonical choice of admissible states on H⊗n⊗H[λ],
we focus on maximally entangled inputs:

ψ
[λ]
ME := 1√

dimH[λ]

dimH[λ]∑
�=1

e� ⊗ f�, (5)

where {ek}k and {f�}� are arbitrary orthonormal bases of H⊗n and H[λ]. (For the admissibility
of ψ

[λ]
ME, see the proof of theorem 1, and for a statistical meaning of this choice, see the

appendix.)
Now that the SLD Fisher metric g is given by a convex combination of the components g[λ]

as (4), the problem amounts to finding the index λ that maximizes the SLD Fisher information
matrix J0

[
ψ

[λ]
ME

]
. This is completely solved by the following.
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Theorem 3. For irreducible representations specified by the Dynkin index λ = [n1, n2, . . . ,

nD−1], the SLD Fisher information matrix J0
[
ψ

[λ]
ME

]
is given by

(
J0

[
ψ

[λ]
ME

])
ij

= 4c[λ]

D2 − 1
δij ,

where

c[λ] := 1

2D


D2

D−1∑
µ=1

pµ + D


D−1∑

µ=1

pµ +
D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µpµ


 −


D−1∑

µ=1

pµ




2

 (6)

with

pµ :=
D−1∑
ν=µ

nν

the length of the µth row of the corresponding Young frame. In particular,

J0
[
ψ

[λ]
ME

]
� J0

[
ψ

[n,0,...,0]
ME

] = 2

D(D + 1)
n(n + D),

and the maximum is attained only if λ = [n, 0, . . . , 0].

3. Proof of theorems

3.1. Proof of theorem 1

We prove a more detailed assertion.

Lemma 4. Let τ : SU(D) → B(H[λ]) be an irreducible representation. For ψ ∈ H⊗n ⊗H[λ],
the following are equivalent:

(a) There is a locally unbiased estimator M on H⊗n ⊗ H[λ] that satisfies V0[M|ψ] =
(J0[ψ])−1.

(b) 〈ψ |I ⊗ [τ∗(Y ), τ∗(Z)]ψ〉 = 0 for all Y,Z ∈ su(D).
(c) 〈ψ |I ⊗ τ∗(Y )ψ〉 = 0 for all Y ∈ su(D).
(d) ψ is admissible.

Proof. We first prove (a) ⇔ (b). According to [10], (a) occurs if and only if

{〈Li,θψθ |Lj,θψθ 〉}1�i,j�D2−1

are all real at θ = 0, where ψθ := (I ⊗ τ(Uθ))ψ , and Li,θ is an ith SLD of the pure state
model ρθ = |ψθ 〉〈ψθ |. (See also [11].) By direct computation using the coordinate system (1)
and the canonical representation Li,θ = 2∂iρθ for pure state models [12], we have

Li,0ψ0 = 2
√−1(I ⊗ τ(U0))(I − |ψ〉〈ψ |)(I ⊗ τ∗(Xi))ψ

and

〈Li,0ψ0|Lj,0ψ0〉 = 4〈ψ |I ⊗ τ∗(Xi)τ∗(Xj )ψ〉 − 4〈ψ |I ⊗ τ∗(Xi)ψ〉〈ψ |I ⊗ τ∗(Xj )ψ〉. (7)

As a consequence

Im〈Li,0ψ0|Lj,0ψ0〉 = 2√−1
〈ψ |I ⊗ [τ∗(Xi), τ∗(Xj )]ψ〉,

and the assertion immediately follows.
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Next, (b) ⇔ (c) is a direct consequence of the fact that Lie algebra su(D) is simple [13].
In fact, [su(D), su(D)] = su(D), so that [τ∗(su(D)), τ∗(su(D))] = τ∗(su(D)).

Finally we prove (c) ⇔ (d). Since the (i, j)th entry of J0[ψ] is given by Re〈Li,0ψ0|
Lj,0ψ0〉, we have from (7) that

tr J0[ψ] = 4〈ψ |I ⊗ C[λ]ψ〉 − 4
D2−1∑
i=1

|〈ψ |I ⊗ τ∗(Xi)ψ〉|2 , C[λ] :=
D2−1∑
i=1

τ∗(Xi)
2.

Since {Xi}i are chosen to be Killing orthonormal up to scaling, the operator C[λ] is the second
order Casimir operator [13] for the representation τ , and is a scalar multiple of the identity:
C[λ] = c[λ]I . The coefficient c[λ] is explicitly given by (6), see [14]. As a consequence,

tr J0[ψ] = 4c[λ] − 4
D2−1∑
i=1

|〈ψ |I ⊗ τ∗(Xi)ψ〉|2 � 4c[λ]

for all ψ . Now observe that the upper bound 4c[λ] is achievable. In fact, let ψ be a maximally
entangled state ψ

[λ]
ME, then〈

ψ
[λ]
ME

∣∣I ⊗ τ∗(Xi)ψ
[λ]
ME

〉 = 1

dimH[λ]
Tr τ∗(Xi) = 0,

because elements of τ∗(su(D)) have trace zero. Therefore

tr J0
[
ψ

[λ]
ME

] = 4c[λ] = max{tr J0[ψ]|ψ ∈ H⊗n ⊗ H[λ]}.
The equivalence (c) ⇔ (d) now follows immediately. �

3.2. Proof of theorem 2

Let τ [λ] : SU(D) → B(H[λ]) be irreducible representations, and let ψ ∈ H⊗n ⊗ H⊗n be
decomposed into

ψ =
∑

λ

∑
STab(λ)

a[λ]ψ [λ], (8)

where ψ [λ] ∈ H⊗n ⊗ H[λ]. Further let

ψθ := (
I ⊗ U⊗n

θ

)
ψ =

∑
λ

∑
STab(λ)

a[λ](I ⊗ τ [λ](Uθ))ψ
[λ],

and let Li,θ be an ith SLD of the corresponding model ρθ = |ψθ 〉〈ψθ |. Then by an evaluation
similar to (7), we have

〈Li,0ψ0|Lj,0ψ0〉 = 4
∑

λ

∑
STab(λ)

|a[λ]|2〈ψ [λ]|I ⊗ τ [λ]
∗ (Xi)τ

[λ]
∗ (Xj )ψ

[λ]〉

− 4


∑

λ

∑
STab(λ)

|a[λ]|2〈ψ [λ]|I ⊗ τ [λ]
∗ (Xi)ψ

[λ]〉



×

∑

λ

∑
STab(λ)

|a[λ]|2〈ψ [λ]|I ⊗ τ [λ]
∗ (Xj )ψ

[λ]〉

 . (9)

Now suppose that ψ [λ] are all admissible. It then follows from lemma 4(c) that

〈Li,0ψ0|Lj,0ψ0〉 = 4
∑

λ

∑
STab(λ)

|a[λ]|2〈ψ [λ]|I ⊗ τ [λ]
∗ (Xi)τ

[λ]
∗ (Xj )ψ

[λ]〉.



4396 H Imai and A Fujiwara

As a consequence

Im〈Li,0ψ0|Lj,0ψ0〉 = 2√−1

∑
λ

∑
STab(λ)

|a[λ]|2〈ψ [λ]|I ⊗ [τ [λ]
∗ (Xi), τ

[λ]
∗ (Xj )]ψ

[λ]〉 = 0,

which follows from lemma 4(b). This proves the achievability of (3). On the other hand,

J0[ψ] = [Re〈Li,0ψ0|Lj,0ψ0〉]ij =
∑

λ

∑
STab(λ)

|a[λ]|2J0[ψ [λ]].

This proves the decomposition (4).
It should be noted that for any input ψ of the form (8) having a fixed set of coefficients

{a[λ]}λ, we obtain from (9) that

tr J0[ψ] � 4
∑

λ

∑
STab(λ)

|a[λ]|2c[λ].

Moreover, this upper bound is achievable if ψ [λ] are all admissible. This observation supports
the validity of restricting inputs ψ to superpositions of admissible states.

3.3. Proof of theorem 3

By direct calculation using (7), we have(
J0

[
ψ

[λ]
ME

])
ij

= 4

dimH[λ]
Kτ(Xi,Xj ),

where

Kτ(Y,Z) := Tr τ∗(Y )τ∗(Z).

Since, for each U ∈ SU(D), the adjoint action Ad(U) : su(D) → su(D) : Y �→
UYU−1 is Kτ -orthogonal, in that Kτ(Ad(U)Y, Ad(U)Z) = Kτ(Y,Z), it follows from [15,
theorem VIII.2.4] that Kτ is identical, up to a constant multiple, to the Killing metric. In other
words, there is a constant rτ satisfying Kτ(Y,Z) = rτ Tr YZ, so that Kτ(Xi,Xj ) = (rτ /2)δij .
Consequently,

(D2 − 1)
rτ

2
=

D2−1∑
i=1

Kτ(Xi,Xi) =
D2−1∑
i=1

Tr τ∗(Xi)
2 = Tr C[λ] = dimH[λ]c[λ].

By using these relations, we obtain(
J0

[
ψ

[λ]
ME

])
ij

= 2rτ

dimH[λ]
δij = 4c[λ]

D2 − 1
δij . (10)

We next show that (10) takes the maximum at λ = [n, 0, . . . , 0]. Letting M := ∑D−1
µ=1 pµ,

the coefficient c[λ] is rewritten as

c[λ] = 1

2D


D2M + D


M +

D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µpµ


 − M2


 . (11)

The problem is thus reduced to maximizing (11) under the constraint that M � n and

p1 � p2 � · · · � pD−1 � 0.

Since

D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µpµ �
D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

pµ �


D−1∑

µ=1

pµ




2

− 2
D−1∑
µ=1

pµ = M2 − 2M,
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we have

c[λ] � 1

2D
[D2M + D(M2 − M) − M2] = D − 1

2D
(M2 + DM) � D − 1

2D
(n2 + Dn).

By checking the condition for each inequality to saturate, it is easily seen that this upper bound
is attained if and only if λ = [n, 0, . . . , 0].

4. Geometry of SU (D) estimation

Theorem 3 implies that, for each n, the optimal input is ψ
[n,0,...,0]
ME , and that the optimal strategy

for estimating an unknown SU(D) channel exhibits

min
M(n),ψ(n)

Vθ [M(n)|ψ(n)] = D + 1

n(n + D)

(
Jθ

[
ψ

[1]
ME

])−1
. (12)

The implication of this result is profound1. In the standard (classical) statistics, it is commonly
believed that the estimation error approaches zero in the rate of O(1/n). In contrast, for
estimating an unknown SU(D) channel, the estimation error approaches zero asymptotically
in the rate of O(1/n2) as (12) asserts.

Let us recast this result in terms of differential geometry. Theorem 3 asserts that the
output manifold

M[λ] := {(
id⊗n ⊗ �⊗n

U

)(∣∣ψ [λ]
ME

〉 〈
ψ

[λ]
ME

∣∣)∣∣U ∈ SU(D)
}

for a maximally entangled input ψ
[λ]
ME is locally isometric, up to a scaling factor

√
c[λ], to the

Riemannian manifold SU(D) equipped with the Cartan-Killing metric. On the other hand,
it is easily seen that M[λ] is diffeomorphic to SU(D)/ZD . As a consequence, we have the
following.

Theorem 5. The output manifold M[λ] is isometric to SU(D)/ZD up to a scaling factor√
c[λ].

In order to get a better perspective on theorem 5, let us study the simplest case SU(2) in
detail. When n = 1, an input ψ ∈ H ⊗ H is decomposed into the following Schmidt form:

ψ = √
1 − αe1 ⊗ f1 +

√
αe2 ⊗ f2,

where α ∈ [0, 1] describes the degree of entanglement. The structure of the corresponding
output manifold {(id ⊗ �U)(|ψ〉〈ψ |)|U ∈ SU(2)} was studied in detail in [11], and is
illustrated in figure 1. When α = 0 or 1, the output manifold degenerates to a two-dimensional
sphere CP 1 ∼= S2 of radius 1/2, which is nothing but the Bloch sphere. When 0 < α < 1, on
the other hand, the global topology of the output manifold completely changes into one which
is diffeomorphic to the three-dimensional real projective space SU(2)/{±I }∼= SO(3)∼= RP 3.
Moreover, as the degree α of entanglement approaches 1/2, the manifold gradually inflates and
hence points on the manifold are getting separated from each other. Finally when α reaches 1/2
(i.e., when the input is maximally entangled), the maximally inflated output manifold becomes
isometric to RP 3 of unit radius. This is the underlying differential geometrical mechanism for
the admissibility of a maximally entangled input. In fact, the larger the SLD Fisher distance
of two nearby quantum states becomes, the easier one can distinguish these states, as the
quantum Cramér–Rao inequality asserts. For general n, the situation is similar: the output
manifold inflates maximally (on average) when the input is a maximally entangled state ψ

[n]
ME

on the invariant subspace specified by the Dynkin index λ = [n], and it becomes isometric

1 Although in a different setting, an analogous asymptotic property has been obtained in [1–4]; see also [16].
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S2
1
2

S2
1
2

RP3 1

0 1 2 1

Figure 1. The global structure of the manifold of output states for n = 1. When α = 0 or
1, it collapses to two-dimensional sphere S2 of radius 1/2; when α = 1/2, it is isometric to
three-dimensional real projective space RP 3 of unit radius; otherwise it is diffeomorphic, but is
not isometric, to RP 3 of any radius.

to RP 3 of radius rn =
√

(n2 + 2n)/3. In summary, the degree of entanglement controls the
‘shape’ of the output manifold, while the degree n of extension controls its maximal ‘radius’.

As to SU(D) for D � 3, on the other hand, the output manifold is not of constant curvature
even for a maximally entangled input ψ

[λ]
ME. In fact, the dimension of a Cartan subalgebra of

su(D) is greater than 1, and the sectional curvature vanishes there. Thus the notion of radius
is not relevant for the case D � 3. However the situation is analogous: if the input is taken
to be a maximally entangled state ψ

[λ]
ME, then as the degree n of extension increases, the ‘size’

of output manifold increases in the rate
√

c[λ] which is asymptotically linear in n, while the
‘shape’ is kept unchanged.

5. Concluding remarks

The problem of estimating an unknown SU(D) channel �U : ρ �→ UρU ∗ was studied based
on the quantum Cramér–Rao inequality. By invoking extensions (id ⊗ �U)⊗n, it was shown
that there was a sequence of input states ψ(n) and estimators M(n) on (H⊗H)⊗n that exhibited

min
M(n),ψ(n)

Vθ [M(n)|ψ(n)] = O

(
1

n2

)
.

The optimal coefficient was also determined explicitly. Further, the mechanism behind this
asymptotic behaviour was investigated from a differential geometrical point of view.

Combining this result with the former one obtained in [6], we can conclude that there are at
least two classes of quantum channels that exhibit essentially different asymptotic behaviours:
the minimal estimation error is of O(1/n2) for SU(D) channels, while it is of O(1/n) for
generalized Pauli channel2. It is an open problem whether there is a quantum channel that
exhibits an asymptotic rate O(1/ns) with s 
= 1, 2.

Appendix. Nonexistence of maximal SLD metric

In this appendix, we demonstrate that the set {J0[ψ]|ψ ∈ H⊗n ⊗ H[λ]} does not in general
have the maximal element. Let us consider the irreducible representation λ = [n1] of SU(2),

2 Recently, it was shown that low-noise channels also exhibited the same asymptotic behaviour O(1/n) [17].
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which is also called the highest weight j := n1/2 representation. We take Xi := σi/2 to be
the basis of su(2), where {σi}i are Pauli matrices. We further take an input of the form

ψ = ψ [n1] :=
n1∑

k=0

√
αkek ⊗ fk,

where (αi)i is a probability vector, and fk := |j,m〉 is the standard orthonormal basis of H[λ]

with m := j − k, (0 � k � n1), satisfying

Ŝ±|j,m〉 =
√

j (j + 1) − m(m ± 1)|j,m ± 1〉, Ŝ3|j,m〉 = m|j,m〉,
with Ŝi := τ [n1]

∗ (Xi), and Ŝ± := Ŝ1 ± √−1Ŝ2. The corresponding SLD Fisher information
matrix J0[ψ] is given by

(J0[ψ])ij = 4
∑

k

αk Re〈fk|Ŝi Ŝj fk〉 − 4

(∑
k

αk〈fk|Ŝifk〉
) (∑

k

αk〈fk|Ŝj fk〉
)

.

Let n1 = 2 for definiteness. Then after some calculation, we have

(J0[ψ])11 = (J0[ψ])22 = 2(α0 + 2α1 + α2), (J0[ψ])33 = 4[α0 + α2 − (α0 − α2)
2],

and the off-diagonal elements are all zero. Consequently, the input ψ is admissible if and only
if α0 = α2, for which we have

J0[ψ] = 4


1 − α

1 − α

2α


 , (A.1)

where α0 = α2 = α and α1 = 1 − 2α, with 0 � α � 1/2.
Now suppose there is an input φ which gives the maximal Fisher information matrix. Let

us denote the matrix as

J0[φ] = 4


a ∗ ∗

∗ b ∗
∗ ∗ c


 ,

where the off-diagonal elements are suppressed. Since φ is necessarily admissible,

a + b + c = (1 − α) + (1 − α) + 2α = 2.

On the other hand, since J0[φ] � J0[ψ] for all α, it holds that

a � 1 − α, b � 1 − α, c � 2α

for all α. As a consequence, a, b, c � 1, so that

a + b + c � 3.

This is a contradiction, proving that no such a φ exists.
Incidentally, formula (A.1) demonstrates what happens when the entanglement parameter

α is changed. In order to get better distinguishability in the first (and the second) direction of the
parameter, we need to make α as small as possible. But accordingly, we lose distinguishability
in the third direction. In general, if one tries to get more information about some directions,
then he loses information about the other directions, as long as input states are chosen among
admissible ones. This is the statistical, as well as the geometrical, meaning of the fact that no
maximal element exists in {J0[ψ];ψ ∈ H⊗n ⊗H[λ]}. In a sense, a maximally entangled input
(e.g., α = 1/3 in the above example) gives an estimation scheme ‘impartial’ to all directions
of the parameter.
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[2] Bagan E, Baig M and Muñoz-Tapia R 2004 Quantum reverse-engineering and reference frame alignment without
non-local correlations Phys. Rev. A 70 030301

[3] Hayashi M 2006 Parallel treatment of estimation of SU(2) and phase estimation Phys. Lett. A 354 183–9
[4] Kahn J 2006 Fast rate estimation of an unitary operation in SU(d) Preprint quant-ph/0603115
[5] Fujiwara A 2006 Strong consistency and asymptotic efficiency for adaptive quantum estimation problems

J. Phys. A: Math. Gen. 39 12489–504
[6] Fujiwara A and Imai H 2003 Quantum parameter estimation of a generalized Pauli channel J. Phys. A: Math.

Gen. 36 8093–103
[7] Amari S and Nagaoka H 2000 Methods of Information Geometry (Transl. Math. Monographs vol 191)

(Providence, RI: American Mathematical Society)
[8] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic)
[9] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland)

[10] Matsumoto K 2002 A new approach to the Cramer-Rao type bound of the pure state model J. Phys. A: Math.
Gen. 35 3111–24

[11] Fujiwara A 2002 Estimation of SU(2) operation and dense coding: an information geometric approach Phys.
Rev. A 65 012316

[12] Fujiwara A and Nagaoka H 1995 Quantum Fisher metric and estimation for pure state models Phys. Lett.
A 201 119–24

[13] Sattinger D H and Weaver O L 1986 Lie Groups and Algebras with Applications to Physics, Geometry, and
Mechanics (Applied Mathematical Sciences vol 61) (New York: Springer)

[14] Barut A O and Raczka R 1977 Theory of Group Representations and Applications (Warszawa: Polish Scientific
Publishers)

[15] Simon B 1996 Representaions of Finite and Compact Groups (Graduate Studies in Mathematics vol 10)
(Providence, RI: American Mathematical Society)

[16] Balllester M 2005 Estimation of SU(d) using entanglement Preprint quant-ph/0507073
[17] Hotta M, Karasawa T and Ozawa M 2006 N-body-extended channel estimation for low-noise parameters

J. Phys. A: Math. Gen. 39 14465–70

http://dx.doi.org/10.1103/PhysRevLett.93.180503
http://dx.doi.org/10.1103/PhysRevA.70.030301
http://dx.doi.org/10.1016/j.physleta.2006.01.043
http://www.arxiv.org/abs/quant-ph/0603115
http://dx.doi.org/10.1088/0305-4470/39/40/014
http://dx.doi.org/10.1088/0305-4470/36/29/314
http://dx.doi.org/10.1088/0305-4470/35/13/307
http://dx.doi.org/10.1103/PhysRevA.65.012316
http://dx.doi.org/10.1016/0375-9601(95)00269-9
http://www.arxiv.org/abs/quant-ph/0507073
http://dx.doi.org/10.1088/0305-4470/39/46/015

	1. Introduction
	2. Main results
	3. Proof of theorems
	3.1. Proof of
	3.2. Proof of
	3.3. Proof of

	4. Geometry of
	5. Concluding remarks
	Appendix. Nonexistence of maximal SLD metric
	References

